Brevet de Technicien Supérieur

Session 2006

Épreuve de mathématiques

durée: 2h

Spécialités: Aménagement finition, Assistant technique d'ingénieur, Bâtiment, Charpente couverture, Conception et réalisation de carrosseries, Construction navale, Domotique, Enveloppe du bâtiment: façade-étanchéité, Équipement technique-énergie, Étude et économie de la construction, Géologie appliquée, Industries graphiques: communication graphique, Industries graphiques: productique graphique, Maintenance et après-vente automobile, Maintenance et exploitation des matériels aéronautiques, Mécanique et automatismes industriels, Microtechniques, Moteurs à combustion interne, Productique mécanique, Traitement des matériaux, Travaux publics.

Exercice 1: (11 points) Second ordre, étude locale d'une fonction et intégration

Les trois parties de cet exercice peuvent être traitées de façon indépendante.

- Partie A - Résolution d'une équation différentielle -

On considère l'équation différentielle

$$(E) y'' - 3y' - 4y = -5e^{-x}$$

où y est une fonction de la variable x, définie et deux fois dérivable sur \mathbb{R} , y' la fonction dérivée de y, et y'' sa fonction dérivée seconde.

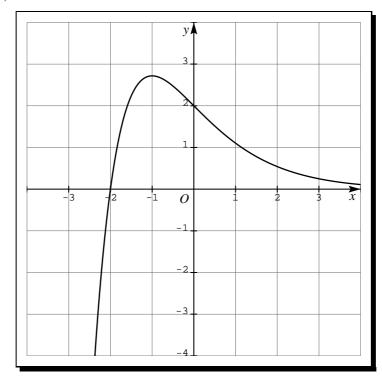
1. Déterminer les solutions sur $\mathbb R$ de l'équation différentielle :

$$(E_0) y'' - 3y' - 4y = 0$$

- **2.** Soit h la fonction définie sur \mathbb{R} par : $h(x) = xe^{-x}$. Démontrer que la fonction h est une solution particulière de l'équation différentielle (E).
- **3.** En déduire l'ensemble des solutions de l'équation différentielle (*E*).
- **4.** Déterminer la solution f de l'équation (E) qui vérifie les conditions initiales f(0) = 2 et f'(0) = -1.

- Partie B - Étude locale d'une fonction -

La courbe C ci-dessous est la représentation graphique, dans un repère orthonormal $(O; \vec{\imath}, \vec{\jmath})$, de la fonction f définie sur \mathbb{R} par $f(x) = (x+2)e^{-x}$.



1. Démontrer que le développement limité à l'ordre 3, au voisinage de 0, de la fonction f est

$$f(x) = 2 - x + \frac{x^3}{6} + x^3 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$

- **2.** Déduire du **1.** une équation de la tangente T à la courbe C au point d'abscisse 0.
- **3.** Étudier la position relative de *C* et *T* au voisinage du point d'abscisse 0.

- Partie C - Calcul intégral -

On note
$$I = \int_0^{0.6} f(x) \, dx$$
.

- 1. À l'aide d'une intégration par parties, démontrer que I = 3 3, $6e^{-0.6}$.
- **2.** Donner la valeur approchée arrondie à 10^{-3} de *I*.
- 3. Donner une interprétation graphique du nombre I.

Exercice 2 : (9 points) Des chaudières... (conditionnelles, loi normale, intervalle de confiance)

Une entreprise fabrique des chaudières de deux types :

- des chaudières dites « à cheminée »,
- des chaudières dites « à ventouse ».

Les quatre parties de cet exercice peuvent être traitées de façon indépendante.

- Partie A - Ajustement affine -

Le nombre de chaudières fabriquées lors des années précédentes est donné par le tableau suivant :

Rang de l'année x _i	0	1	2	3	4	5
Nombre de chaudières fabriquées : y_i (unité : le millier)	15, 35	15, 81	16,44	16,75	17, 19	17, 30

- 1. À l'aide d'une calculatrice, déterminer :
 - a) le coefficient de corrélation linéaire de la série statistique double de variables x et y; arrondir à 10^{-2} ;
 - b) déterminer une équation de la droite de régression de y en x, sous la forme y = ax + b, où a sera arrondi à 10^{-3} et b sera arrondi à l'unité.
- **2.** En supposant que la tendance observée se poursuive pendant deux années, estimer le nombre de chaudières qui seront fabriquées l'année de rang 7.

- Partie B - Probabilités conditionnelles -

L'entreprse a fabriqué en un mois 900 chaudières à cheminées et 600 chaudières à ventouse. Dans ce lot, 1% des chaudières à cheminées sont défectueuses et 5% des chaudières à ventouse sont défectueuses.

On prélève au hasard une chaudière dans la production de ce mois. Toutes les chaudières ont la même probabilité d'être prélevées.

On considère les événements suivants :

A: « La chaudière est à cheminée »;

B: « La chaudière est à ventouse »;

D : « La chaudière présente un défaut ».

- **1.** Déterminer p(A), p(B), p(D|A) et p(B|D).
- **2.** Calculer $p(D \cap A)$ et $p(D \cap B)$.
- **3.** En remarquant que $D = (D \cap A) \cup (D \cap B)$ et que les événements $D \cap A$ et $D \cap B$ sont incompatibles, calculer p(D) et $p(\overline{D})$.

- Partie C - Loi normale -

Soit *X* la variable aléatoire qui, à chaque chaudière à cheminée prélevée au hasard dans la production, associe sa durée de fonctionnement en années.

On admet que *X* suit la loi normale de moyenne 15 et d'écart-type 3.

Une chaudière est dite « amortie » si sa durée de fonctionnement est supérieure ou égale à 10 ans.

Calculer la probabilité qu'une chaudière prélevée au hasard dans la production soit « amortie »; arrondir à 10^{-3} .

- Partie D - Intervalle de confiance -

On considère un échantillon de 100 chaudières prélevées au hasard dans un stock important. Ce stock est assez important pour qu'on puisse assimiler ce tirage à un tirage avec remise.

On constate que 94 chaudières sont sans aucun défaut.

- 1. Donner une estimation ponctuelle de la fréquence inconnue p des chaudières de ce stock qui sont sans aucun défaut.
- **2.** Soit *F* la variable aléatoire qui, à tout échantillon de 100 chaudières prélevées au hasard et avec remise dans ce stock, associe la fréquence des chaudières de cet échantillon qui sont sans aucun défaut.

On suppose que F suit la loi normale de moyenne p et d'écart-type $\sqrt{\frac{p(1-p)}{100}}$, où p est la fréquence inconnue des chaudières du stock qui sont sans aucun défaut.

Déterminer un intervalle de confiance de la fréquence p avec le coefficient de confiance 95%. Arrondir les bornes à 10^{-2} .

3. On considère l'affirmation suivante : « le fréquence *p* est obligatoirement dans l'intervalle de confiance obtenu à la question **2.** ».

Est-elle vraie ? (On ne demande pas de justification.)