s1 mai 12 novembre 2002

Corrigé du devoir surveillé nº 2

Exercice: Étude d'une fonction rationnelle

1. Il suffit de réduire au même dénominateur l'expression proposée. Il vient

$$f(x) = -1 + \frac{1}{x-1} + \frac{1}{2(x-1)^2} = \frac{-2(x-1)^2}{2(x-1)^2} + \frac{2(x-1)}{2(x-1)^2} + \frac{1}{2(x-1)^2}$$
$$= \frac{-2x^2 + 4x - 2 + 2x - 2 + 1}{2(x-1)^2}$$

d'où

$$-1 + \frac{1}{x-1} + \frac{1}{2(x-1)^2} = f(x) = \frac{-2x^2 + 6x - 3}{2(x-1)^2}$$

2. a) Pour la limite de f en $-\infty$, on utilise la première écriture. Il vient alors

$$\lim_{x \to -\infty} f(x) = -1$$

puisque

$$f(x) = -1 + \frac{1}{x - 1} + \frac{1}{2(x - 1)^2} \quad \text{avec} \quad \begin{cases} \lim_{x \to -\infty} (x - 1) = -\infty \\ \lim_{x \to -\infty} 1/(x - 1) = 0 \\ \lim_{x \to -\infty} 1/2(x - 1)^2 = 0 \end{cases}$$

- b) On en déduit une asymptote horizontale d'équation y = -1.
- c) Pour la limite de f en 1 (en fait en 1^- puisque l'on se situe à gauche de 1 dans l'intervalle] $-\infty$; 1[), on utilise la deuxième écriture. Il vient alors

$$\lim_{x \to 1^{-}} f(x) = +\infty$$

puisque

$$f(x) = \frac{-2x^2 + 6x - 3}{2(x - 1)^2} \quad \text{avec} \quad \begin{cases} \lim_{x \to 1} (-2x^2 + 6x - 3) = 1\\ \lim_{x \to 1^-} 2(x - 1)^2 = 0^+ \end{cases}$$

- d) On en déduit une asymptote verticale d'équation x = 1
- 3. a) Utilisons l'écriture

$$f(x) = -1 + \frac{1}{x-1} + \frac{1}{2} \times \frac{1}{(x-1)^2}$$

Il vient

$$f'(x) = \frac{-1}{(x-1)^2} + \frac{1}{2} \times \frac{-2}{(x-1)^3} = \frac{-(x-1)}{(x-1)^3} + \frac{-1}{(x-1)^3} \quad \text{soit} \quad \boxed{f'(x) = \frac{-x}{(x-1)^3}}$$

b) Comme par hypothèse on a $x \in]-\infty; 1[$, il vient

$$x < 1$$
 et donc $x - 1 < 0$

donc $(x-1)^3$ topujours négatif sur l'intervalle considéré. d'où le tableau de variation suivant :

х	-∞	0		1
-x	+		_	
$(x-1)^3$	_		_	
f'(x)	_	0	+	
f(x)	-1	-3/2		+∞

4. a) Chercher l'intersection de la droite D avec la courbe C_f revient à résoudre le système

$$\begin{cases} y = -1 \\ y = f(x) \end{cases} \iff \begin{cases} y = -1 \\ -1 = f(x) \end{cases}$$

s1 mai 12 novembre 2002

or la deuxième équation se résoud en

$$-1 = f(x) \iff -1 = -1 + \frac{1}{x-1} + \frac{1}{2(x-1)^2} \iff 0 = \frac{1}{x-1} + \frac{1}{2(x-1)^2}$$

$$\iff 0 = \frac{2(x-1)}{2(x-1)^2} + \frac{1}{2(x-1)^2} \iff 0 = \frac{2x+1}{2(x-1)^2}$$

$$\iff 0 = 2x+1$$

d'où l'unique point d'intersection : $A\left(\frac{3}{2};-1\right)$

b) Étudier les positions relatives de C_f et D revient à étudier le signe de la différence f(x) - (-1). En reprenant les calculs précédents, on voit que

$$f(x) - (-1) = \frac{2x+1}{2(x-1)^2}$$

qui est du signe de (2x + 1) puisque le dénominateur est un carré. D'où le tableau récapitulatif suivant :

x	-∞ -	-1/2 1		
f(x) - (-1)		0 +		
	C_f au dessous de D	C_f au dessus de D		

5.

