Analyse (16) tgm 1 20 mars 2003

Équations différentielles d'ordre 2

Exercice 1 : Équation différentielle d'ordre 2 – Équation trigonométrique

1. Résoudre l'équation différentielle

$$9y'' + y = 0.$$

2. Déterminer la solution particulière f vérifiant les deux conditions

$$f(0) = -\sqrt{3}$$
 et $f\left(\frac{3\pi}{2}\right) = 1$.

3. Déterminer deux nombres réels r et ω strictement positifs et un réel φ de l'intervalle] $-\pi,\pi$ [tels que, quelque soit le réel x,

$$f(x) = r\cos(\omega x + \varphi).$$

4. Résoudre dans \mathbb{R} l'équation f(x) = 0.

Exercice 2 : Équation différentielle d'ordre 2

1. Résoudre l'équation différentielle

(E)
$$y'' + 16y = 0$$
.

2. Déterminer la solution particulière f de l'équation (E) vérifiant

$$f(0) = \pi$$
 et $f\left(\frac{\pi}{8}\right) = \sqrt{3}$

Exercice 3 : Équation différentielle d'ordre 2 – Équation trigonométrique

1. Résoudre l'équation différentielle

$$y + 16y'' = 0.$$

2. Déterminer la solution particulière f de cette équation vérifiant

$$f(0) = 1$$
 et $f(2\pi) = -\sqrt{3}$.

3. Démontrer que, pour tout réel x, on peut écrire

$$f(x) = 2\cos\left(\frac{x}{4} + \frac{\pi}{3}\right).$$

4. Donner alors la solution sur l'intervalle $[0, 2\pi]$ de l'équation

$$f(x) = -\sqrt{2}.$$

Exercice 4 : Équation différentielle d'ordre 2

1. Résoudre l'équation différentielle

$$(E) 4y'' + 9y = 0.$$

2. Déterminer la solution particulière f de l'équation (E) vérifiant

$$f\left(\frac{\pi}{3}\right) = \sqrt{3}$$
 et $f'(\pi) = 0$.

Analyse (16) tgm 1 20 mars 2003

Exercice 5:

1. Résoudre l'équation différentielle

$$\frac{1}{4}y'' + y = 0.$$

2. Déterminer la solution particulière f vérifiant les deux conditions

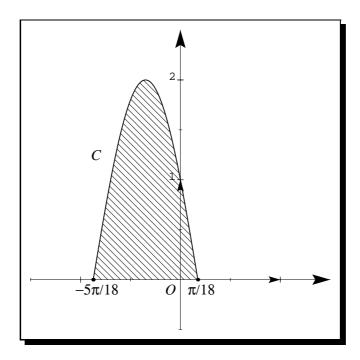
$$f(0) = \frac{3\sqrt{2}}{2}$$
 et $f'(0) = 3\sqrt{2}$.

3. Déterminer deux nombres réels r et ω strictement positifs et un réel φ de l'intervalle] $-\pi,\pi$ [tels que, quelque soit le réel x,

$$f(x) = r\cos(\omega x + \varphi).$$

4. Résoudre dans \mathbb{R} l'équation f(x) = 0.

Exercice 6 : Équation différentielle d'ordre 2 – Calcul de volume


- **1.** On considère l'équation différentielle (E): y'' + 9y = 0.
 - a) Résoudre l'équation (E).
 - b) Déterminer la solution particulière f de (E) vérifiant

$$f\left(\frac{\pi}{2}\right) = \sqrt{3}$$
 et $f'\left(\frac{\pi}{2}\right) = 3$.

2. a) Montrer que l'on peut écrire f(x) sous la forme

$$f(x) = 2\cos\left(3x + \frac{\pi}{3}\right)$$

- b) Résoudre dans l'intervalle $[-\pi/3, \pi/3]$ l'équation f(x) = 0.
- **3.** On munit l'espace d'un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$ (unité graphique : 3 cm).

On appelle C la courbe représentative dans le repère $(O, \vec{\imath}, \vec{\jmath})$ de la fonction g définie sur $[-5\pi/18, \pi/18]$ par

$$g(x) = 2\cos\left(3x + \frac{\pi}{3}\right)$$

Calculer le volume V du solide engendré par la rotation autour de l'axe $(O, \vec{\imath})$ de la partie du plan délimité par l'axe $(O, \vec{\imath})$ et C. On exprimera le résultat en cm³.