Équations et inéquations du second degré

Résolution de l'équation du second degré

Définition, vocabulaire

Une équation du second degré, à une inconnue x, est une équation qui peut s'écrire sous la forme $ax^2 + bx + c = 0$, où a, b, c sont trois réels donnés, a étant différent de zéro.

Un trinôme du second degré est un polynôme de degré 2.

Résoudre, dans \mathbb{R} , l'équation $ax^2 + bx + c = 0$; c'est trouver tous les nombres réels u tels que $au^2 + bx + c = 0$ bu+c=0. Un tel nombre est dit **solution** ou **racine** de l'équation ou encore **racine** ou **zéro** du trinôme $ax^2 + bx + c$.

Si f est un trinôme du second degré définie par $f(x) = ax^2 + bx + c$, résoudre $ax^2 + bx + c = 0$ c'est déterminer les événtuels antécédents de 0 par f.

Résolution de l'équation du second degré

1.2.1 Principe de résolution sur deux exemples

1. On souhaite résoudre dans \mathbb{R} , $3x^2 - 5x - 4 = 0$.

Posons
$$f(x)=3x^2-5x-4$$
, alors pour tout réel x , $f(x)=3\left[x^2-\frac{5}{3}x-\frac{4}{3}\right]$,

$$f(x) = 3 \left[x^2 - \frac{5}{3}x - \frac{5}{3} \right],$$

or $x^2 - \frac{5}{3}x$ est le début d'un carré, car $x^2 - \frac{5}{3}x = \left(x - \frac{5}{6}\right)^2 - \frac{25}{36}.$

Ainsi pour tout réel x,

$$f(x) = 3\left[\left(x - \frac{5}{6}\right)^2 - \frac{25}{36} - \frac{4}{3}\right]$$

$$f(x) = 3\left[\left(x - \frac{5}{6}\right)^2 - \frac{73}{36}\right]$$

$$f(x) = 3 \left[\left(x - \frac{5}{6} \right)^2 - \frac{73}{36} \right]$$

$$f(x) = 3 \left[\left(x - \frac{5}{6} - \frac{\sqrt{73}}{6} \right) \left(x - \frac{5}{6} + \frac{\sqrt{73}}{6} \right) \right]$$

$$f(x) = 3 \left[\left(x - \frac{5 + \sqrt{73}}{6} \right) \left(x - \frac{5 - \sqrt{73}}{6} \right) \right].$$

$$f(x) = 3\left[\left(x - \frac{5 + \sqrt{73}}{6}\right)\left(x - \frac{5 - \sqrt{73}}{6}\right)\right].$$

Il en résulte que f(x)=0 équivaut à $x=\frac{5+\sqrt{73}}{6}$ ou à $x=\frac{5-\sqrt{73}}{6}$. De plus on a obtenu une factorisation de f(x).

2. On souhaite résoudre dans \mathbb{R} , $2x^2 + 3x + 4 = 0$.

Posons
$$f(x) = 2x^2 + 3x + 4$$
, alors pour tout réel x ,

$$f(x) = 2\left[x^2 + \frac{3}{2}x + 2\right],$$

or
$$x^2 + \frac{3}{2}x$$
 est le début d'un carré, car $x^2 + \frac{3}{2}x = \left(x + \frac{3}{4}\right)^2 - \frac{9}{16}$.

Ainsi pour tout réel x,

$$f(x) = 2\left[\left(x + \frac{3}{4}\right)^2 - \frac{9}{16} + 2\right]$$

$$f(x) = 2\left[\left(x + \frac{3}{4}\right)^2 + \frac{23}{16}\right]$$

Il est clair qu'avec cette factorisation de f(x) l'équation f(x) = 0 n'a pas de solution dans \mathbb{R} .

1.2.2 Cas général

Posons
$$f(x) = ax^2 + bx + c$$
, $a \neq 0$.

1. 1^{ere} étape : Forme canonique de f(x)

Puisque
$$a \neq 0$$
, $f(x) = a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right)$; or $x^2 + \frac{b}{a}x = \left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2}$ car $x^2 + \frac{b}{a}x$ est le début du développement de $\left(x + \frac{b}{2a}\right)^2$.

Donc
$$f(x) = a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a}\right] = a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{4ac}{4a^2}\right] = a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right]$$

Cette dernière écriture de $f(x)$ sous la forme $a[(x + \Box)^2 - \bigcirc]$ est la **forme canonique de** $f(x)$.

2. 1^{ieme} étape : Résolution

On pose
$$\Delta = b^2 - 4ac$$
, ainsi $f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$.

- Si $\Delta < 0$, alors $\frac{\Delta}{4a^2} < 0$, le nombre entre crochets est strictement positif donc l'équation f(x) = 0n'a pas de solution.
- Si $\Delta=0$, alors $f(x)=a\left(x+\frac{b}{2a}\right)^2$, ainsi f(x)=0 équivaut à $a\left(x+\frac{b}{2a}\right)^2=0$ équivaut à $x+\frac{b}{2a}=0$

$$-\operatorname{Si}\Delta < 0, \operatorname{alors}\Delta = (\sqrt{\Delta})^2 \operatorname{et} f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{(\sqrt{\Delta})^2}{4a^2} \right] = a \left[\left(x + \frac{b}{2a} \right)^2 - \sqrt{\frac{\Delta}{2a}}^2 \right] = a \left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a} \right) \left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a} \right) = a \left(x - \frac{-b - \sqrt{\Delta}}{2a} \right) \left(x + \frac{-b + \sqrt{\Delta}}{2a} \right).$$
 Si l'on pose $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$, alors $f(x) = a(x - x_1)(x - x_2)$. Puisque $a \neq 0$, l'équation $f(x) = 0$ a donc deux solutions distinctes x_1 et x_2 .

Définition 1

- **1.** Le nombre b^2-4ac est appelé discriminant de l'équation du second degré $ax^2+bx+c=0$ ou du trinôme $ax^2 + bx + c$. On le note Δ (lire "delta").
- **2.** L'expression $a\left[\left(x+\frac{b}{2a}\right)^2-\frac{\Delta}{4a^2}\right]$ est la forme canonique de f(x).

Théorème 1 Racine de l'équation $ax^2 + bx + c = 0$

Lorsque $\Delta < 0$, *l'équation n'a pas de racine.*

Lorsque $\Delta = 0$, *l'équation a une racine*, $-\frac{b}{2a}$.

Lorsque $\Delta > 0$ *, l'équation a deux racines distinctes :*

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}, x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

Comment résoudre des équations du second degré?

1. En général, mais pas toujours (voir plus bas), on calcule le discriminant Δ et on utilise les formules du théorème.

$x^2 - 3x + 4 = 0$	$3x^2 - \frac{7}{2}x + \frac{49}{48} = 0$	$3x^2 - x - 4 = 0$
a = 1, b = -3, c = 4 $\Delta = (-3)^2 - 4 \times 1 \times 4 = -7$ $\Delta < 0, \text{ pas de solution.}$	$\Delta = \left(-\frac{7}{2}\right)^2 - 4 \times 3 \times \frac{49}{48} = 0$ $\Delta = 0, \text{une solution} - \frac{b}{2a} = \frac{7}{12}.$	$ a = 3, b = -1, c = -4 $ $ \Delta = (-1)^2 - 4 \times 3 \times (-4) = 49 $ $ \Delta > 0, \text{ deux solutions :} $ $ x_1 = \frac{-b - \sqrt{\Delta}}{2a} = -1 $ $ x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{4}{3} $

2. Il n'est pas toujours utile (ni judicieux) de calculer Δ , c' est le cas des équations suivantes :

•
$$4x^2 - 5 = 0$$

$$\bullet \ 7x^2 + 3x = 0$$

•
$$-3(x-1)(x+2) = 0$$

Comment relier les racines et les coefficients du trinôme?

Propriété 1

- Lorsque l'équation $ax^2 + bx + c = 0$, $a \neq 0$ a deux racines x_1 et x_2 , alors $x_1 + x_2 = -\frac{b}{a}$ et $x_1x_2 = \frac{c}{a}$. Lorsque l'équation $ax^2 + bx + c = 0$ a une seule solution x_0 , alors $x_0 + x_0 = -\frac{b}{a}$ et $x_0x_0 = \frac{c}{a}$.

Second degré page 2/4 Preuve $x_1 + x_2 = \frac{-b - \sqrt{\Delta}}{2a} + \frac{-b + \sqrt{\Delta}}{2a} = \frac{-2b}{2a} = -\frac{b}{a}$ et $x_1 \times x_2 = \frac{-b - \sqrt{\Delta}}{2a} \times \frac{-b + \sqrt{\Delta}}{2a} = \frac{b^2 - \Delta}{4a^2} = \frac{4ac}{4a^2} = \frac{c}{a}$. Le calcul est trivial pour le deuxième cas.

Remarque : Il est utile de retenir que si on connaît a priori une racine alors on peut savoir à l'aide de ces formules si c'est la seule ou non et, dans ce cas, obtenir la valeur de la deuxième.

Par exemple, si on remarque que 1 est racine de l'équation $x^2 - 3x + 4 = 0$ comme $x_1x_2 = \frac{c}{a} = 4$ alors 4 est aussi solution de l'équation. Comme elle en a au plus deux la résolution est terminée.

3 Factorisation et signe du trinôme

3.1 Factorisation du trinôme

D'après la démonstration du théorème 1 on peut établir le théorème suivant :

Théorème 2 *Notons* $f(x) = ax^2 + bx + c$, $a \neq 0$

- Lorsque $\Delta < 0$, la factorisation de f(x) (à coefficients réels) n'est pas possible.
- Lorsque $\Delta = 0$, $f(x) = a\left(x + \frac{b}{2a}\right)^2$ est la forme factorisée de f(x).
- Lorsque $\Delta > 0$, l'équation f(x) = 0 a deux racines distinctes x_1 et x_2 et $f(x) = a(x x_1)(x x_2)$ est la forme factorisée de f(x).

3.2 Signe du trinôme

Théorème 3

- **1.** Lorsque $\Delta < 0$, f(x) est toujours du signe de a.
- **2.** Lorsque $\Delta = 0$, f(x) est du signe de a sauf lorsque $x = -\frac{b}{2a}$ auquel cas f(x) = 0.
- **3.** Lorsque $\Delta > 0$, f(x) est du signe de a sauf lorsque x est entre les solutions de f(x) = 0 où f(x) est du signe de -a.

Promo

- Cas $\Delta < 0$: la forme canonique de f(x) est $a\left[\left(x+\frac{b}{2a}\right)^2-\frac{\Delta}{4a^2}\right]$. Comme $\Delta < 0$ le nombre entre crochets est strictement positif, donc f(x) est du signe de a pour tout x.
- Cas $\Delta=0$: la forme factorisée de f(x) est $a\left[\left(x+\frac{b}{2a}\right)^2\right]$ donc f(x) est du signe de a sauf pour $x=-\frac{b}{2a}$ où il est nul.
- Cas $\Delta > 0$: la forme factorisée de f(x) est $a(x-x_1)(x-x_2)$ où x_1 et x_2 sont les solutions de l'équation f(x) = 0. Si, par exemple, x_1 est la plus petite de ces deux racines on obtient le tableau de signes

survait.						
x	$-\infty$	x_1		x_2		$+\infty$
a	signe de d	a	signe de a		signe de a	
$x-x_1$		0	+		+	
$x-x_2$	_		_	0	+	
$(x-x_1)(x-x_2)$	+	0	_	0	+	
f(x)	signe de d	<i>a</i> 0	signe de $-a$	0	signe de a	

4 Fonction trinôme du second degré

Théorème 4

La courbe représentative, dans le plan muni d'un repère orthogonal $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, de la fonction trinôme du second degré $f: x \longmapsto ax^2 + bx + c$, est une parabole. Cette parabole est "tournée vers le haut" si a>0 et "tournée vers le bas" si a<0. Son sommet a pour abscisse $-\frac{b}{2a}$ et la droite d'equation $x=-\frac{b}{2a}$ est un axe de symétrie de cette courbe.

Second degré page 3/4

détaillée en cours.

Remarque : la rédaction de ce théorème sous-entend que le vecteur \overrightarrow{j} du repère est dirigé vers le haut. Ainsi le signe de a nous renseigne sur l'allure de la courbe. Le signe de Δ nous renseigne sur le nombre de points d'intersection de la courbe avec l'axe des abscisses. En effet :

- si $\Delta < 0$, l'équation f(x) = 0 n'a pas de solutions donc la courbe ne coupe pas l'axe des abscisses.
- si $\Delta=0$, l'équation f(x)=0 a une solution donc la courbe et l'axe des abscisses n'ont qu'un point commun.
- si $\Delta > 0$, l'équation f(x) = 0 a deux solutions donc la courbe coupe l'axe des abscisses en deux points.

Le tableau suivant illustre les cas possibles :

	$\Delta > 0$	$\Delta = 0$	$\Delta < 0$
factorisation de $f(x)$	$a(x-x_1)(x-x_2)$	$a(x - x_0)^2$	pas de factorisation
equation f(x) = 0	$2 \text{ solutions } x_1 \text{ et } x_2$	une solution x_0	pas de solution
signe de $f(x)$	signe de a 0 x_1 x_1 x_2 signe de $-a$	signe de a 0 x_0	signe de a
courbes pour $a > 0$	$ \begin{array}{c c} & y \\ \hline & -\frac{b}{2a} \\ \hline & O \\ \hline & F_2 \\ \hline & F(-\frac{b}{2a}) \end{array} $	$O = -\frac{b}{2a}$	$ \begin{array}{c c} & y \\ \hline & \\ \hline & -\frac{b}{2a} & O \end{array} $
courbes pour $a < 0$	$ \begin{array}{c c} & y \\ \hline & f(-\frac{b}{2a}) \\ \hline & x_1 \\ \hline & -\frac{b}{2a}O \\ \hline & x_2 \\ \hline & x_3 \end{array} $	$x_0 = -\frac{b}{2a}$	$ \begin{array}{c c} & y \\ \hline & -\frac{b}{2a} \\ \hline & O \\ \hline & T \\ \hline & \\ f(-\frac{b}{2a}) \end{array} $

Second degré page 4/4