EXERCICE 1

1. Le système donné est successivement équivalent aux systèmes :

$$\begin{cases} x = 7y - z - 40 \\ 3(7y - z - 40) - y - z = 20 \\ 7y - z - 40 + y - z = -10 \end{cases} \begin{cases} x = 7y - z - 40 \\ 10y - 2z = 70 \\ 4y - z = 15 \end{cases}$$

Puis aux systèmes:

$$\begin{cases} x = 7y - z - 40 \\ z = 4y - 15 \\ 10y - 2(4y - 15) = 70 \end{cases} \begin{cases} x = 7y - z - 40 \\ z = 4y - 15 \\ 2y = 40 \end{cases} \begin{cases} y = 20 \\ z = 65 \\ x = 35 \end{cases}$$

D'où $S = \{(35, 20, 65)\}.$

2. a. À la fin de la première partie, A et B, qui ont gagné, ont des avoirs doublés qui deviennent respectivement 2x et 2y.

L'avoir de C, qui a perdu, est donc de z - x - y.

b. À la fin de la deuxième partie, B et C, qui ont gagné, ont des avoirs doublés qui deviennent respectivement 4y et 2(z-x-y).

L'avoir de A, qui a perdu, est donc de 2x - 2y - (z - x - y) = 3x - y - z.

À la fin de la troisième partie, A et C, qui ont gagné, ont des avoirs doublés qui deviennent respectivement 2(3x - y - z) et 4(z - x - y).

L'avoir de B, qui a perdu, est donc de 4y - (3x - y - z) - 2(z - x - y) = -x + 7y - z.

c. Les avoirs des trois joueurs sont identiques à la fin de cette troisième partie. On est alors conduit à résoudre le système :

$$\begin{cases} 6x - 2y - 2z = 40 \\ -x + 7y - z = 40 \\ 4z - 4x - 4y = 40 \end{cases}$$

système équivalent au système :

$$\begin{cases} 3x - y - z = 20 \\ -x + 7y - z = 40 \\ x + y - z = -10 \end{cases}$$

qui a été résolu à la première question.

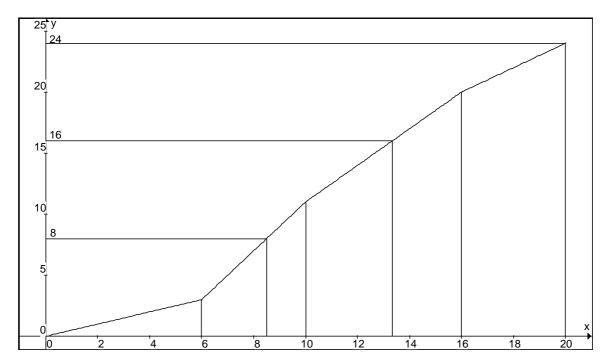
Les avoirs respectifs des joueurs A, B et C au début du jeu sont donc de 35 F, 20 F et 65 F.

EXERCICE 2

1. On note $\mathcal{A}(ABC)$ l'aire du triangle ABC.

Si
$$M \in [OB]$$
, soit $0 \le x \le 6$, $f(x) = A(OMA) = \frac{1}{2}x$;
si $M \in [BC]$, soit $6 \le x \le 10$, $f(x) = A(OAB) + A(BAM) = 3 + \frac{1}{2}(x - 6) \times 4 = 2x - 9$;
si $M \in [CD]$, soit $10 \le x \le 16$, $f(x) = A(OAB) + A(BAC) + A(CAM) = 11 + \frac{1}{2}(x - 10) \times 3 = \frac{3}{2}x - 4$;
si $M \in [DO]$, soit $16 \le x \le 20$, $f(x) = A(OBCD) - A(OAM) = 24 - \frac{1}{2}(x - 16) \times 2 = x + 4$.

2. D'où le graphique:



3. L'aire du rectangle est de 24 unités d'aire : l'aire de chacun des domaines cités est donc de 8 unités d'aire. Soit x_1 l'abscisse de M_1 . On cherche $x_1 \in [6; 10]$ tel que $f(x_1) = 8$.

Soit x_2 l'abscisse de M_2 . On cherche $x_2 \in [10; 16]$ tel que $\mathcal{A}(M_2AOD) = \mathcal{A}(OBCD) - f(x) = 8$, c'est à dire $f(x_2) = 16$.

Graphiquement on cherche les abscisses des points du graphique d'ordonnées 8 et 16 : on lit $x_1 \approx 8, 5$ et $x_2 \approx 13, 4$.

Par le calcul:

- on résout f(x) = 8 lorsque $x \in [6; 10]$, soit 2x 9 = 8. On trouve x = 8, 5, valeur qui appartient bien à l'intervalle [6; 10].
- on résout f(x) = 16 lorsque $x \in [10; 16]$, soit $\frac{3}{2}x 4 = 16$. On trouve $x = \frac{40}{3}$, valeur qui appartient bien à l'intervalle [10; 16].

EXERCICE 3

- 1. a. Par théorème,
 - $|x-2| \ge 1$ équivaut à $x \le 1$ ou $x \ge 3$;
 - $|x-2| \le 4$ équivaut à $-2 \le x \le 6$.

Les deux conditions précédentes seront donc simultanément vérifiées ssi $x \in [-2; 1] \cup [3; 6]$.

b. La double inégalité donnée est équivalente à $|2x+3| \ge 2$ et $|2x+3| \le 3$.

Par théorème,

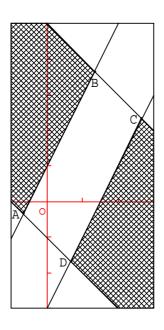
- $|2x + 3| \ge 2$ équivaut à $(2x \le -5 \text{ ou } 2x \ge -1)$ équivaut à $(x \le -\frac{5}{2} \text{ ou } x \ge -\frac{1}{2})$;
- $|2x + 3| \le 3$ équivaut à $-6 \le 2x \le 0$ équivaut à $-3 \le x \le 0$.

Les deux conditions précédentes seront donc simultanément vérifiées ssi $x \in \left[-3; -\frac{5}{2}\right] \cup \left[-\frac{1}{2}; 0\right]$.

2. $|x+y-2| \le 3$ équivaut à $-1 \le x+y \le 5$ équivaut à $(y \ge -x-1)$ et $y \le -x+5$.

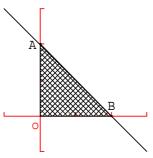
 $|2x-y-1|\geqslant 2$ équivaut à $(2x-y\geqslant -1 \text{ ou } 2x-y\leqslant 3)$ équivaut à $(y\leqslant 2x+1 \text{ ou } y\geqslant 2x-3)$.

En désignant par (AD) et (BC) les droites d'équations y = -x - 1 et y = -x + 5, par (AB) et (DC) les droites d'équations y = 2x + 1 et y = 2x - 3, les points M cherchés sont ceux extérieurs au parallèlogramme ABCD dans la bande limitée par (AD) et (BC). D'où le graphique.



EXERCICE 4

1. Pour $x \ge 0$ et $y \ge 0$, $|x| + |y| \le 2$ équivaut à $x + y \le 2$ équivaut à $y \le -x + 2$. Les solutions sont les coordonnées des points intérieurs au triangle OAB limité par les droites d'équations x = 0, y = 0 et y = -x + 2.



2. Autres cas:

- si $x \ge 0$ et $y \le 0$, $|x| + |y| \le 2$ équivaut à $x y \le 2$ équivaut à $y \ge x 2$ dont les solutions sont les coordonnées des points intérieurs au triangle limité par les droites d'équations x = 0, y = 0 et y = x 2;
- si $x \le 0$ et $y \le 0$, $|x| + |y| \le 2$ équivaut à $-x y \le 2$ équivaut à $y \ge -x 2$ dont les solutions sont les coordonnées des points intérieurs au triangle limité par les droites d'équations x = 0, y = 0 et y = -x 2;
- si $x \le 0$ et $y \ge 0$, $|x| + |y| \le 2$ équivaut à $-x + y \le 2$ équivaut à $y \le x + 2$ dont les solutions sont les coordonnées des points intérieurs au triangle limité par les droites d'équations x = 0, y = 0 et y = x + 2.
- 3. En résumé, les solutions de l'inéquation $|x| + |y| \le 2$ sont les coordonnées des points intérieurs au carré ABCD délimité par les quatre droites d'équations y = -x + 2, y = x 2, y = -x 2 et y = x = 2. D'où le graphique :

